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The precession angle of a polarization vector is calculated for a positively charged short-lived 
baryon channeling between single-crystal planes. When very energetic polarized baryons are 
produced such that the production plane of the baryon is almost parallel to the crystal plane, it is 
shown that the interaction of the polarization with inhomogeneous electric fields inside the crystal 
can be neglected from the equation of motion of the particle. In this case, the equation of motion 
of the polarization vector becomes the same as when the electric field is homogeneous. It is also 
shown that when the crystal is bent perpendicular to the planar direction, the precession angle of 
the polarization vector of short-lived baryons can be expressed as a0~ = ½3,2[(2 - g + g/- /2)]vr/R 
under the same condition as above, where 7 is the Lorentz factor, g the g factor of the magnetic 
moment, R the bending radius of the crystal and r the lifetime of the particle. It is also shown that 
in some cases this precession should be large enough to determine the magnetic moment of 
short-lived particles, such as the charmed baryon A~ + . 

1. Introduction 

The magnet ic  m o m e n t  of baryons ,  which is re la ted to the spin vector  by  the 

fo rmula /L  = ( g q / 2 m c ) S ,  where q is the charge,  S the spin  and m the mass  of  the 

par t ic le ,  is one of  the most  impor t an t  intr insic  p roper t ies  of  e l ementa ry  par t ic les  and  

the poss ib i l i ty  of  measur ing  it has  been  first discussed by  G o l d h a b e r  [1] and  by  Lee 

and  Yang  [2]. The  g fac tor  is 2 for a charged poin t - l ike  Di rac  part icle ,  and  g = 0 for 

a spin-½ neut ra l  part icle .  Devia t ion  f rom these values, usual ly  cal led the anomalous  

magne t ic  moment ,  is in te rpre ted  as evidence of  hadron ic  substructure .  The  s imple 

quark  mode l  [3-7]  fits r easonab ly  well most  of  the exist ing da ta  on the magne t ic  

m omen t s  of  ba ryons  with g = 2 for quarks  ( table  1), which inc lude  the l ight quarks  

u, d and  s t range quark  s. This fact  has been seen as clear  evidence suppor t ing  the 

view that  quarks  indeed behave  as poin t - l ike  Di rac  part icles .  

Recent  precise  measurements  of  ba ryon ic  magnet ic  momen t s  [8-11] have signifi- 

can t ly  improved  the accuracy and  tr iggered several new a t t empts  at  theoret ica l  

s tudies  [12-15].  A l though  overal l  agreement  be tween theoret ical  p red ic t ions  and 
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TABLE 1 

Magnetic moments of baryons (units in g N = eh/2 m pc) 

Particles Theory [41] Experiments Ref. 

p 2.79 2.79 

n - 1 . 9 1  - 1 . 9 1  
A -0.612 -0.6129 ± 0.0045 [9] 
~+ 2.39 2.33 + 0.13 [42] 

- - 0.95 - 1.40 ± 0.37 [43] 
~o 0.61 
y0 - 1.27 - 1.250 ± 0.014 [9] 
_'-- -0.48 -0.75 ± 0.07 [44] 

" Q2 +0"25 [45] A ~  ° 1.45 1.o o.ls 

experimental data has improved, none of the present models fit all the available data 
satisfactorily. In particular for the magnetic moment  of ~ -  and ~ the agreement is 
poor. Moreover, there are many different models and unresolved ambiguities related 
to quark ordering. 

Recently, the possible substructure of the quark is actively discussed and accurate 
knowledge of the magnetic moments of baryons and quarks could play a very 
important role in testing these ideas and could impose significant constraints on any 
model proposed [16,17]. Since the discovery of the J/tk particle, many new particles 
with heavy flavored quarks, namely charm and bot tom quarks, have been dis- 
covered, revealing new physical phenomena. Unfortunately, however, there are no 
experimental data available on the magnetic moment  of baryons with heavier 
flavored quarks, Such information obviously introduces a new dimension and should 
be accounted for by any comprehensive hadronic theory. This would also help to 
eliminate quark ordering ambiguities in the theoretical models. A reason of the 
non-availability of experimental information on the magnetic moments  of baryons 
with heavy flavored quarks is because their lifetimes are too short to measure the 
magnetic moment  by standard techniques. There is also an overall lack of under- 
standing of the hadronic production mechanism, decay channels etc. 

One of the typical methods applied to determine the baryonic magnetic moment  is 
to measure the precession angle of the polarization vector of the particles in a known 
magnetic field by analysing the proton emission angular distribution in the final 
decaying states [9]. However, the lifetime of the baryons, which have heavier 
flavored quarks as their constituents, like A~,  is too short for a conventional magnet 
to produce any detectable effect on the polarization vector of the particles before 
they decay. Typically the lifetime of A~ + is of the order of 10 -~3 sec, which results in 
cr  - 0.003 cm. Therefore, it is desirable to search for an alternative to measure the 
magnetic moment  of short-lived baryons. A potential candidate is to use a strong 
electric field inside a single crystal of high atomic number. This was first pointed out 
in 1980 by Pondrom. 
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In this report we study the motion of channeling particles and the equation of the 
polarization vector under the influence of the crystal electric field and investigate the 
effect of the electric field of the planes and axes of different available crystals. This 
study shows that in order to apply the electric field inside a crystal to measure the 
magnetic moment of baryons, in addition to the extremely strong electric field, the 
bending of the crystal along its planar direction is essential. 

In sect. 2 we will briefly describe some characteristic aspects of crystals related 
with our subject, channeling phenomena, and calculate the electric field strengths for 
several crystal planes and axes. In sect. 3 we will calculate the magnitude of the 
precession angle of the polarization vector due to the electric field around the plane 
and axis of an unbent crystal. In sect. 4 we will discuss the bending effect of a crystal 
on the magnitude of the precession angle of the polarization vector. 

2. Channeling and the crystal field 

When a positively charged energetic particle approaches a crystal axis or plane at 
an angle smaller than a certain characteristic value, it experiences a successive series 
of'correlated gentle Coulomb collisions with the atoms along the corresponding axis 
or plane and thus avoids the high-density region of the atoms while traveling 
through the crystal. This directional effect on the motion of the particle controlled 
by the crystal axes or planes is called particle channeling and has been a subject of 
extensive study in solid state physics with low-energy particle or ion beams [18,19]. 

Since the mid-seventies, several channeling experiments with high-energy particle 
beams have been carried out, and succeeded in producing observable channeling 
effects of up to 250 GeV [20,21]. It has been suggested by Tsyganov [22] and has 
been experimentally confirmed [23, 24] by using Si crystals that high-energy charged 
particles channeling between major crystal planes can be guided along bent crystal 
planes, thus making it possible to change the direction of the high-energy particles. 
The bending effect is simply due to very strong electric fields around the crystal 
planes or axes. Although the electric field strength depends on the kind of crystal 
and on the specific plane or axis concerned, the values are of the order of 
101° V/cm.  

The characteristic angle which distinguishes the channeled and non-channeled 
particles is called the critical angle and is defined at high energy as 

~/ 4ZxZ2 e2 
t~a ~--- e d  a , ( 1 )  

for the axes, and 

~pp=~4ZlZ2e~NdvCa 
(2) 

for the planes, where e is the relativistic energy of the particle, Z 1 the charge of the 
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TABLE 2 
Characteristic constants of crystal 

tal 
Si Ge W Pt 

charge 14 32 74 78 
atomic weight 28.09 72.59 183.85 195.09 
screening distance 0.1864 0.1407 0.1086 0.1068 
atoms/A 3 0.0499 0.0442 0.0631 0.0660 
Debye temperature (°K) 543 290 310 225 
thermal amplitude (293 °K) 0.075 0.085 0.050 0.066 
thermal amplitude (150 °K) 0.063 0.0373 0.0486 
plane width (A) 1.920 2.000 2.238 2.2649 

(110) (110) (110) (111) 
atomic spacing (,~,) 3.840 4.000 2.741 2.774 

(110) (110} (111> (110) 

incident particle with Z 2 the pro ton  number  of the atoms in the crystal, d a the 

a tomic spacing along the corresponding axis, dp the separation between adjacent 
planes, N the volume density of  atoms, a the screening distance and C is a constant  

related to the screening which normally has a value C = q~.  Some of the impor tant  

characteristic constants  of Si, Ge, W and Pt crystals are listed in table 2 and critical 
angles in table 3. 

It  has been demonstra ted by Lindhard  [18] that channeling phenomena  can be 
satisfactorily explained by the classical cont inuum model,  where the potentials due 
to individual atoms are averaged along the axis or plane. The accuracy of the model  
increases as the energy of  the particle increases [25]. One of  the most  impor tant  
assumptions of the cont inuum model  is the approximate  conservation of the 
transverse energy of  channeled particles. If  we neglect multiple scattering by the 
electrons and atoms displaced from the lattice site due to the vibrations, which tends 

to increase the transverse energy of the channeled particles, conservation of  trans- 
verse energy of the channeled particles is accurate for particles with incident angle 
~in less than the critical angle. However  the effects of  multiple scattering by both  

TABLE 3 
Critical angles of crystals (unit in/x rad) 

Si Ge W Pt 

(110) (110) (110) (110) (111) (110) (110) (111) 

100 45.8 15.8 67.9 19.9 124.7 33.6 127.3 35.2 
200 32.4 11.2 48.0 14.1 88.2 23.7 90.0 24.9 
300 26.5 9.12 39.2 11.5 72.0 19.4 73.5 20.3 
400 22.9 7.90 33.9 10.0 62.3 16.8 63.6 17.6 
500 20.5 7.10 30.4 8.90 55.8 15.0 56.9 15.8 
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electrons and displaced atoms on the trajectories of channeled particles have been 
detected experimentally [20, 21] and are also predicted by theory. A typical theoreti- 
cal treatment of these effects is based on the diffusion theory of particles [26-28]. 

When the transverse energy of a channeled particle is increased beyond a critical 
energy, the particle penetrates into the region where the density of the lattice atoms 
is high and thus may have close collisions with one or several atoms, which causes 
the particle to change its trajectory violently, thus leading to non-conservation of 
transverse energy in the sense of the continuum potential model and eventually leads 
to the dechanneling of the particle. 

As will be explained later we are primarily interested in planar channeling, and 
the continuum potential which describes planar channeling can often be rather well 
approximated by a simple harmonic potential. The simple harmonic potential is 
defined as 

U(x) = Vo z~, (3) 

where x = 0 is the midpoint between the atomic planes. The discussion of more 
realistic potentials can be found in several references [19, 29, 30]. The coefficients V 0 
of several different crystals are listed in table 4, along with the electric fields 
calculated at ½dp. Because of thermal vibrations, eq. (3) is not strictly valid up to 
½dp as shown in fig. I. Therefore, the values of E ( x )  at ½dp given in table 4 should 
be considered as maximum values for each corresponding plane. 

For region II in fig. I, which is taken from ref. [31], E(½dp) is approximately 
calculated for the Si crystal and given by 

E(½dp) - 2.5 X 109 V/cm.  (4) 
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Fig. 1. Continuum potentials of Si crystal based on the Molibre potential model, ref. [31]: (a) is for the 
(110) axis and (b) is for the (110) planes. 
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TABLE 4 
V 0 and E(lzdp) for crystal planes 

Crystal plane V (V/A 2) E(12dp) (V/A) 

Si (110) 2%33 56.3 
Ge (110) 45,30 99.5 
W (110) 126,1 282.2 
Pt (111) 126.2 307.8 

Evidence from realistic models, like the Moli6re potential, as well as experimental 
evidence suggest that in the region close to the plane but still inside region I in fig. 1, 
the electric field seems to be stronger than that suggested by the simple harmonic 
potential model. However, as mentioned before, we will continue to use a harmonic 
potential for the crystal planar potential throughout the rest of this paper. This will 
tend to underestimate the precession of the polarization. 

3. Precession of the polarization vector 

If the expectation value of the spin component  of a particle has a non-zero 
maximum value S in a certain direction e 0, the particle is polarized and the 
polarization vector of the particle is defined as 

S = eoS  = e o ( o . e > ,  (5) 

where o is the intrinsic spin of the particle. The magnitude of the polarization S is 
known to be a constant of the motion but its direction changes in an electromagnetic 
field. 

If a baryon C is produced in a parity-conserving interaction by unpolarized beam 
particles, the polarization vector S c of particle C is normal to the interaction plane 
formed by the incident particle momentum kin and the outgoing particle C momen- 

tum kou t, i.e. 

S c / / k i n  )< ]tout" (6)  

For the remainder of the discussion, we assume that the particles we are interested in 
are produced with polarization. If the baryon C goes through a magnetic field 
perpendicular to the polarization S c before it decays, then the precession angle q~ of 
the polarization vector S c is expressed as 

e , (7) 
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where f ( H  ) is a function of the magnetic field H. ~ can be determined by measuring 
the components of Sc, which can be deduced from the emission angular distribution 
of the final protons [32]. The magnetic moment/~c is then given as the gradient of 
the function in eq. (7), if we know the function f ( H ) .  In the following discussion, we 
will study the function f ( H )  due to the crystal field. 

3.1. PRECESSION ANGLE OF THE POLARIZATION VECTOR 

The polarization vector S, like the other expectation values of quantum observ- 
ables, will follow classical equations of motion. Classical relativistic equations of 
motion of spinor particles have been studied by several authors, typically by 
Bargmann et al. [33] for a homogeneous external electromagnetic field and by Good 
[34] for an inhomogeneous external field including up to first-order field-gradient 
effects by using a four-vector description of the polarization. 

As has been discussed before, the electromagnetic field inside the crystal is very 
inhomogeneous. Along a crystal axis, the electric field is not only inhomogeneous, 
but also the direction is radially outward from each string. Therefore, the influence 
on the polarization vector will be different from particle to particle because of 
different azimuthal impact positions relative to the axis and this makes it impossible 
to apply the axial field to measure the polarization of the beam. For atomic planes, 
the electric field is also inhomogeneous, but its direction is parallel all over the 
crystal and is well approximated by a simple harmonic potential. Moreover, its effect 
on the direction of change of the polarization vector will not change from particle to 
particle as will be shown in sect. 4. We will therefore concentrate only on the planar 
field. 

In order to study the polarization of a particle, it is convenient to have covariant 
expressions for the equations of motion. In general, the equation of motion of the 
polarization vector S in the rest frame is 

dS  
-87 = g , S  × n * ,  (8) 

where H* is the magnetic field in the rest frame of the particle. Its covariant form, 
given in ref. [35], is 

;3 = gt~[ S F -  V( SFV)]  - V( S V ) ,  (9) 

where S = (s 0, s), S = (0, SR) in the rest frame, V= 3'(1, 13), F is the anti-symmetric 
electromagnetic field tensor, 13 = v / c  and its derivative is taken over proper time. If 
two unit vectors n and ! = ~/ f l  perpendicular to each other are defined such that the 
polarization vector in the rest frame S R lies in the plane spanned by n and I, the 
covariant expression for the precession rate of the polarization vector can be written 
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as [35] 
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O R = L N  - g I~LFN (10) 

= ~ N I , ' -  g ~ L F N .  (11) 

where O R = ~c(sr, [3), L = y(~8, !) and N = (0, n). Since the first term is due to the 
angular change of the vector l, these equations express the precession rate of 
the polarization vector relative to the particle momentum vector in the rest system of 
the particle in covariant form. 

3.2, PERIODIC CANCELLATION OF ,~0 R IN AN UNBENT CRYSTAL 

Fig. 2a shows the trajectory of a positively charged particle channeling through a 
planar channel of an unbent crystal. Since the electric field is symmetric about the 
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Fig. 2. Channeling particle's trajectory through crystal planes: (a) is for unbent  crystal and (b) is for bent 
crystal planes. 
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central line of the planar channel, the trajectory itself is also symmetric. The 
precession angle of the polarization vector AOp. can be obtained by solving eq. (11) 
when a proper equation for 1," is given. 

When the electric field is inhomogeneous and H =  0, Good [34] derived the 
equation of motion of the particle as 

dp  
= e E + / x y 2 [ V + 1 3 × ( 1 3 × v ) l S - ( E × 1 3 ) ,  (12) 

dt  

which includes corrections up to first order of the gradient of E. For the simple 
harmonic potential, 

v S . ( E ×  13) = 2VoSyi, (13) 

where i = ! × n. By substituting this result into eq. (11), one can easily solve it for 
A0 R. This solution shows that there are additional non-zero contributions to A0 R 
from the inhomogeneous field. 

However, since we are interested in very high energy particles which are channel- 
ing through a crystal planar channel and the planar critical angle is very small as 
indicated in table 3, 13 should be almost parallel to the crystal planar direction in 
order for the particle to channel. Moreover, in order to produce very high energy 
secondary particles, the momentum of the incident beam particle should be very 
large and almost parallel to the crystal planar direction, since the production cone 
would be very narrow. Therefore, the interaction plane will be almost parallel to the 
crystal plane and the polarization vector S will be nearly perpendicular to the crystal 
plane and will satisfy the condition 

V S - ( E ×  13) = O. (14) 

We can therefore neglect the interaction term of S with E in eq. (12) which then 
turns out to be the same equation of motion as that of a polarized particle subjected 
to a homogeneous electromagnetic field. Under this condition, eq. (11) becomes 

dt 2mc ( g -  Z ) -  (E.n) ,  (15) 

which is a well-known equation for the case of a homogeneous field. 
The total precession angle of S over the trajectory can be obtained by integrating 

eq. (15) over time. However, since E is symmetric about the central line in fig. 2a, 
most of the contributions to A0 R in successive half-cycles cancel. The maximum A0R 
will therefore be produced over a single half-cycle of the motion. A0 R in eq. (15) can 
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be expressed in terms of the transverse momentum transfer of the particle as 

AOR= 2 m f l c  ( g - 2 ) -  A p ±.  (16) 

When eq. (14) is satisfied, the interaction term of S with E is negligible and the 
conservation of transverse energy in the channeling is given by 

e .  = ½pv+ 2 + e U ( x ) ,  (17) 

where q~ is the angle of 13 relative to the planar direction. The maximum A p .  in eq. 
(16) can then be expressed in terms of the critical angle, which results in 

1 7 [ ( g - 2 ) - g ]  (18) 
A0R-  2 fl ~ q~P" 

This gives A0 R over a quarter period of the motion and although its value depends 
on many factors, its maximum is only of the order of mrads, which is not large 
enough to allow a reliable measurement of the magnetic moment. If we substitute eq. 
(2) for +p, we find the dependence of A0 R on ),, Z 2 as 

AO R - vfvZ z . (19) 

From eq. (19) we can conclude that the larger the Z 2 of the crystal and the higher 
the energy of the incident particle, the larger the precession angle A0 R will be. This is 
easy to understand because high Z 2 means a stronger electromagnetic field and 
higher energy means a larger time dilatation factor in the Lorentz transformation. 

4. Bending effect on the polarization vector 

The discussion of sect. 3 reveals that the periodic cancellation of the contribution 
to A0 R due to the electric field of the opposite plane severely limits the magnitude of 
A0 R. This limitation can be overcome by using a bent crystal. The major change 
introduced by bending the crystal is that a centrifugal term is introduced into the 
effective potential and this shifts the equilibrium position of the trajectory away 
from the symmetry point of the potential as shown in fig. 2b. The shift of the 
trajectory not only reduces the periodic cancellation of AOR, but also allow A0 R to 
accumulate through many cycles while the particles are channeling along the bent 
track (fig. 2b). The magnitude of the accumulation will increase as bending curvature 
increases and as the length of the channeling trajectory through the bent crystal 
increases. However, as will be discussed later, increasing the bending curvature 
effectively lowers the height of the effective potential-well and results in a reduction 



LJ. Kim / Baryon magnetic moment 261 

of the number of particles channeling through the bent crystal. Increasing the length 
of the bent crystal is also limited by the lifetime of the short-lived particle and by the 
dechanneling phenomena. These conflicting effects force a compromise in the crystal 
bending curvature and length. Since the effect of bending on the track of the positive 
particles and negative particles differs significantly and the simple harmonic poten- 
tial model is not a good approximation for negative particles, in this report we will 
confine ourselves to positive particles only. 

4.1. BENDING EFFECT ON THE TRAJECTORY OF A POSITIVE PARTICLE 

If a crystal is bent along one of the major directions with bending radius R and if 
the planar direction is properly aligned relative to the polarization direction so that 
eq. (14) is satisfied for the channeled particles, then we can neglect the interaction 
term of S with E and the equation of motion becomes 

dZx + e U ' ( x ) +  1 
d z  2 po  ~ = 0, (20 )  

where the last term is the centrifugal term. This equation can be integrated to give 

p/) 
, l  = ½pv  2 + e U ( x )  + (21) 

This is the modified equation of the transverse energy conservation for a particle 
channeling through bent planes. This equation suggests the modification of the 
effective potential as [36, 37] 

po 
U"( x ) = eU( x ) + - ~  x .  (22) 

The centrifugal term introduces asymmetry in the effective potential such that it 
lowers the height of the outer potential wall while it increases the height of the inner 
wall when compared with the potential of the unbent crystal (fig. 3). This makes 
many particles, which would channel through if the crystal was not bent, dechannel 
when they enter into the bent crystal. In other words, any particle whose transverse 
energy e .  satisfies 

Bc < e l  < ec (23) 

will channel through the unbent crystal; but when it is incident on the bent crystal it 
c is the critical transverse energy when the crystal is not bent and will dechannel, e± 

Bc is the critical transverse energy when it is bent. Those dechanneled particles will e± 
cross over the outer plane and will not follow the bent trajectory. Some model 
calculations have been carried out to estimate the dechanneling fraction due to 
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crystal  bending  [36, 37]. If  we use the simple harmonic  potent ial  for U(x), then the 
effective potent ia l  will be  

UB(x )  = V0(x 2 + ux) ,  (24) 

where the new variable u is defined as 

1 pv (25) 
u eVo R "  

L ( a /  

" \  
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~ ' \  ~le , / / "  
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i 
Fig. 3. Modified continuum (110) planar potential of bent tungsten: (a) is for the positive particle where 
x = 0 is in the central position between two adjacent planes and (b) is for the negative particle where 

x = 0 is a planar position. 
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By using the variable u, many equations in the following discussion can manifestly 
show their universal character in the sense that it can be easily applied to different 
crystals. Eq. (24) indicates that the period of the motion is not affected by the 
bending of the crystal, but the equilibrium position of the trajectory is shifted from 
x = 0 to x = - ½u for the simple harmonic model. 

If  the total transverse energy e± is smaller than the energy corresponding to the 
maximum height of the bent crystal potential, the particle will remain channeled and 
the particle trajectory will be confined between x L < x < x H in the channel as shown 
in fig. 2b. The minimum and maximum transversal position in the channel can be 
obtained from eq. (21) and given as 

XL= ½(--U-- ~U2 + 4W ), (26) 

xH= ½ ( - u  + ~uZ + 4w ), (27) 

where w = e ± / V  o. Thus the particle oscillates with amplitude a = ½ ~ / ~ +  4w, around 
the equilibrium position x = - ½u in a transverse motion confined to xL < x < x H. 

4.2. BENDING EFFECT ON THE PRECESSION A N G L E  A0 R 

The precession of the polarization vector S is determined by the electric field, and 
not by the centrifugal field. The electric field around the bent plane is still symmetric 
around x = 0, and only part of the contribution to A0 R from x e < x < 0 is cancelled 
by the contribution from 0 < x < x H. The remaining contribution to A0 R will 
accumulate while the particle channels through the bent crystal following the track 
shifted towards the outer plane. 

To find the A0 R of the particle channeling through the bent crystal plane, we can 
neglect the interaction between S and E for the channeling particle and V in eq. (11) 
can be substituted by 

f /= - e-S--F'V, (28) 
mc 

where F' (x )  is the modified field derived from eq. (24), which differs from F(x)  
derived from eq. (3). Then eq. (11) becomes 

e 
OR mflc NF "V - guLFN. (29) 

Simple integration shows that the contribution from the first term in eq. (29) comes 
from crystal bending. As explicitly expressed in eq. (10), the first term is due to the 
change in direction of I = ~/f l  and can be obtained by measuring the bending angle 
of the crystal over the trajectory. 
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If we use the following relation 

L N  = - yn .  l, 

and F is expressed in terms of E, we obtain 

(30) 

V 
Aor, = g~B f E. ndt + 3,~At, (31) 

where the second term gives the bending angle of the crystal over the crystal length 
v • At. The time interval dt can be expressed as 

dt d p .  (32) 
F ' ( x )  ' 

where F ' ( x )  is obtained from eq. (24) and d p .  from eq. (21). Then a simple 
calculation gives us the expression for A0 R as 

~ 2myv  o qr "/vAt 
AOr~ = -- gl*~ e R - -  ~ - u  + - -  ( 3 3 )  

A0 R is the change in the angle between the polarization vector and the velocity of the 
particle measured in the rest frame during one half period of the motion of the 
particle along the plane. Then k0~ over the particle lifetime r is given by 

] Tvr 
A0~=~V ( 2 - - g ) - - ~  ~ , (34) 

where use has been made of the relation for the period given by 

•/m•, (35) T=2~r  2eVo . 

This equation is exactly the same as in the case when the electromagnetic field is 
homogeneous. However, this derivation is based on the assumption that for the 
particles channeling through a bent crystal, the potential is well approximated by a 
simple harmonic potential and the contribution to the particle motion from the 
interaction of S with E is negligible for channeling particles. From eq. (34), we can 
deduce the relation 

1 y3/2 (36) 

(go R 

Eq. (36) is equivalent to eq. (19) since V 0 - Z 2 and also indicates that as the particle 
energy is higher and the crystal is heavier, the precession angle a0/t becomes larger. 



LJ. Kim / Baryon magnetic moment 265 

In order to calculate the expected order of A0~, we will use the definition of the 
magnetic moment 

1 qh (37) 
/* = ~ g  2 m c  " 

Then eq. (34) becomes 

AO~ = [1 -/*~m [~ 2 ] ~2U 
mp I--if-r,  

(38) 

where/* is given in units of nuclear magnetons (/*N = e h / 2 m p C ) .  While the factor 
A = 1 - / * r n / m p f l  2 in eq. (38) is very sensitive to the value of the magnetic moment 
/*, the factor B = 3 , Z v r / R  depends on the particle energy, its lifetime and the bending 
radius of the crystal. For the standard static quark model for spin-½ baryons the 
magnetic moment is given by [39] 

/* = ½(2/.1 + 2/*2 - - / . 3 ) ,  (39) 

where /*i is the constituent quark magnetic moment. If the baryons are flavor 
degenerate, then the second one is given by 

/*' =/*3" (40) 

We will assume the following values for the quark magnetic moment [39] 

/*u = -2/*a = 1.86, 

/*s = -0 .61 ,  /*c=0.39. (41) 

These can be obtained from eq. (37) by assuming they are point-like and assigning 
them a proper mass. We can then calculate the magnetic moment of A+(udc) by 
replacing/*x,/*z with/*o, /*d and /*3 by /*~ in eq. (39). However, since Ac + forms a 
flavor degenerate pair with 2? + in the baryon octet weight diagram, we use eq. (39) 
for/*~2 and eq. (40) for/*a+. Then we obtain 

/*~2 = 0.49, (42) 

/*at+ = 0.39. (43) 

A model calculation [37] shows that for particles with momentum 300 GeV/c,  the 
dechanneling fraction due to the bending of the (110) plane of tungsten with R = 
30 cm is only about 30%. Therefore, in a practical sense, the limit on the bending 
radius of the crystal will be decided by the mechanical properties of the crystal. 
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We will calculate A0{~ for several particles to show the magni tude of the expected 
precession angle of the polarization vector. Assuming that/xAS = 0.39, m c  2 = 2.273 
GeV and SA; = 2.0 X 10-13 sec, we will get A0~ for A + when R = 30 cm and 7 = 200 

z~0~ = 0.44 rad .  (44) 

For  Z +,  if we assume that/~x2 = 0.49 and m c  2 =  2.44 GeV [40], under  the same 
condit ions as above, we will get 

A0~ = --1.1 × 10t3"r. (45) 

Therefore, r =  10 -13 sec will give us about  A0~ = 1 rad. For  S~(usc),  if we use 

/~zg = 0.7 [39] and m c  = 2.5 GeV, under  the same conditions as above, we will get 

A0~ = --3.6 X 10t3~ ". (46) 

However,  there are ambiguities in obtaining ~t_.-g, since there is no guiding principle 
such as isospin symmetry  to decide the quark ordering for -'-~. If  one uses a charmed 
quark as the third quark in eq. (39), then/~,g = 0.7. However,  if one uses a u-quark 
as the third quark, then/x_.- 2 = - 0 . 7 7  [39]. These are about  the same magni tude but  

have opposite sign. Therefore, the accurate measurement  of  #zg could supply us very 
impor tant  information on quark ordering in eq. (39), if the equation is still valid. For  

a particle including a bo t tom flavored quark, Z~(ucb) ,  if we use /x_.-g = 1.5 [39], 
m c  2 = 7 GeV and R = 30 cm, we could achieve 

A0~ = --38 X 10131 - . (47) 

Therefore, for Z~+ and - '~ ,  even if the lifetime is much shorter than A + , we can 
achieve a very large precession angle A0~ over its lifetime even at much lower 7. 

Finally, if we assume that a ~-+ lepton is produced in hadron-hadron  scattering as 
a decay product  of  the F or B meson and also assume that it is polarized 
longitudinally, then eq. (34) can be applied without  modificat ion to calculate the 
precession angle of  the ~-+ lepton polarization vector. However,  if the r+ lepton 

behaves like a point  particle and its anomalous  magnetic moment  does not  deviate 
f rom that of  the muon  or electron, then eq. (34) suggests that  y of  the r+ lepton 
should be larger than 1000 in order to show any appreciable effect on the final 

lepton asymmetry distribution. 

5. Conclusion 

We have shown that it should be possible to apply planar  channeling phenomena  

to measure the magnetic moment  of short-lived baryons  with heavy flavored quarks. 
For  such particles the magnitude of the precession angle AO{t of  the polarization 
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vector of the particle, over its lifetime in the rest frame, is estimated to be of  the 
order  of radians. This assumes that the particles are produced with polarization and 
high y. For  the ~-+ lepton, unless its anomalous  magnetic  moment  deviates f rom the 

value of/x or e, we would need a beam energy of  the order of  10 TeV. 
In order to reach this result, we have assumed that the inhomogeneous  potential  of 

the crystal plane can be approximated by a simple harmonic  potential  and that the 

crystal is aligned so that V S - ( v x E ) = 0 .  Even if the latter condit ion is not 

satisfied, for the simple harmonic  potential approximation,  the contr ibut ion due to 

non-zero value of  ~7S. (v  x E )  is not  significant mainly due to the short lifetime, the 
heavy mass of  the baryons  and the smallness of  A in our  case. 

Al though the exact magni tude of  A0{~ depends on many  factors, by  choosing an 

appropr ia te  crystal and bending radius, we can measure the magnetic moment  of  
short-lived particles with lifetimes of the order of  10-~3 s. Moreover,  by applying 

planar  channeling through a bent  crystal, we should be able to separate spatially 

most  of  the background particles produced at the same time [38]. 
Since we are approaching the tevatron age of  the accelerator, the measurement  of 

the magnetic moments  of  short-lived particles by planar  channeling through a bent  

crystal might be feasible in the near future. 
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